
Chapter 1.3.3:
A Short Glimpse at the Turing Machine

And at Shift Registers Again

We already met the Turing Machine as well as shift registers in earlier
parts of this book, and we will “meet” the Turing Machine in Chapter 5 in
detail again, but here in the parts about sources of completely random
processes both shall only be mentioned. The Turing machine generates
completely random CV developments with its central main knob adjusted
to the 12 o´clock position. Turning it down to the 5 o´clock position the
generated sequences get more and more regular, loose more and more of
their randomness, until we get a completely regular repeating pattern at the
five o´clock position (and with that said I don´t have to mention the Turing
Machine again when I start talking about sources with adjustable amounts
of randomness a bit later in this chapter).

Shift registers with feedback (see chapter 1.2.3) are as random as the
source they get their first register fed with, and as random as the gates,
which start and stop feeding them (again: see chapter 1.2.3 for details).
Therefore they can generate completely random sequences as well as
completely regular repeating sequences as well as anything between.

Chapter 1.3.4:
Perfect Pseudo Randomness:

Gray Code Modules

These Modules are named after the physicist Frank Gray, who invented a
binary system, in which each two consecutive numbers differ only in one
single bit. You will stand a tiny, tiny bit of mathematics here:

The binary correspondent to the decimal value of “1” is “0001” (in a 4-bit
presentation), and the binary correspondent of “2” is “010”. So, two bits
have to be changed. But in Gray Code the decimal number of “2”
corresponds to “011” - only one bit has to be changed.

At first no output is high (high voltage level, gate open, trigger send etc.)
representing the number “0”.
The next step makes output 1 high (= “1”). The next step (= “2”) makes
output 2 high leaving output 1 high as well.
The next step (=”3”) makes output 1 low, but leaves output 2 high. The
next step (=”4”) makes output 3 high leaving output 2 high and output 1
low. And so on according to the Gray Code binary system. The pulses or
gates coming out of the 8 outputs seem perfectly random, but indeed they
strictly follow the Gray Code formula.

We can use each of these outputs (or some of them at the same time, or
even all together) to trigger events, open ADSRs etc. They cannot be used
to generate sequences of different pitches directly, because there are only
two values (low and high), but the video behind the following link shows
how to use them to generate random pitch sequences nevertheless.

Please look at the last picture (steps 0- 7). The first (upper) output switches
2 times to a high during these 7 steps. Output 2 switches only once from
low to high, but stays high for 4 steps etc.

The block diagram of the patch looks as follows:
the upper three modules generate gate signals in seemingly random order.
Always when one of the outputs (of the Gray Code module), that is
patched into the upper mixer is at “high”, a gate signal is sent to the
ADSR. This gate lasts as long as the corresponding output of the Gray
Code module is at “high”. In the block diagram there are 3 of the outputs
patched into the upper mixer, so that there are 3 different gate levels,
which occur at the mixer´s output, but each of these levels will open the
ADSR – the three different levels are not of any importance therefore. As
long as any gate level (except for zero-level - “no gate” of course) comes
out of the mixer, parts of the sequence of pitches, which are generated by
the lower LFO-Quantizer combination are audible. The preset
“graycode.vcv” (presets are only availyble in the book. See
https://dev.rofilm-media.net) and the video behind the following link may
make things even clearer to you, and shall serve as a “base camp” for

https://dev.rofilm-media.net/

experiments of your own.
https://youtu.be/U3htiOV_oBs

Chapter 1.3.5:
Imperfect Pseudo Randomness:

Euclidean Sequencers

The idea is simple: it´s all about spreading a certain number of events (e.g.
triggers or gates) as evenly as possible across a given area (e.g. the length
of a sequence).
Let´s take a sequence of 10 steps length. The most even way to spread 3
triggers is at step 1, at step 4 and at step 7.
Or spreading 5 triggers across a sequence of 13 steps following this
principle would lead to triggers at steps 1, 4, 6, 9 and 11.

https://youtu.be/U3htiOV_oBs

The mathematical algorithm to calculate these positions goes back to the
Greek mathematician Euclid. Therefore the name. There is absolutely
nothing random about it – but there wasn´t any randomness in Gray Code
modules either, and – nevertheless - they “sounded” VERY random, didn´t
they?

Well with Euclidean sequencers it´s a bit different. Their output doesn´t
even sound random – irregular and a bit eccentric, but not random. When
we use Euclidean sequencers for creating rhythms with percussion
instruments we are in the world of native African rhythms quite soon. So,
why are these modules of any importance for the matter of this book?

The answer reads: because we can modulate the length of the sequence (=
the area, where we have to spread out our events) as well as the number of
events to spread across this sequence. And here it starts to sound random –
not that perfectly as with Gray Code modules, but random enough for our
purpose.

When I wrote “number of events” I rather should have called it
“percentage of steps, which initiate an event”, because increasing the
length of a sequence with an Euclidean sequencer increases the number of
events accordingly. And reducing the length of the sequence reduces the
number of events accordingly too. Otherwise modulating the length of the
sequence AND the number of events would lead to impossible situations
(e.g. more events than available steps etc.)

Let´s say I have a sequence of 21 steps and place 9 events evenly (they
will be at steps 1, 4, 6, 9, 11, 13, 15, 18 and 20). Then I reduce the length
of the sequence to let´s say 17. The sequencer automatically reduces the
number of events from 9 to 7 then (at steps 1, 4, 6, 9, 11, 14 and 16).

Things get quite interesting with a larger number of events (e.g. 7 events in
a sequence of 11) and a slow clock. But watch the video behind the
following link, and use the preset “euclid.vcv” (presets are only available
in the book. See https://dev.rofilm-media.net) to experiment.
https://youtu.be/Q-ibEGvAQsc

… to be continued

https://youtu.be/Q-ibEGvAQsc
https://dev.rofilm-media.net/

